Graphing Skills

How to set up successful graphs in Science class!

Line Graphs

- Used to show data that IS continuous.
- Points are plotted using xand y-axis
- Points are connected
- Shows relationship between IV and DV (how/if the IV affects the DV)
- Many times, the IV plotted on the X -axis is time

Population of Wildwood

Bar Graphs

- Data is NOT continuous
- Bars typically don't touch
- Allows us to compare descriptive data like amounts or percentages or categories
- There is no order to the categories on the X -axis

Pie Graphs

Percent of Trees Found in Missouri

- Data is NOT continuous
- Usually presents data as a "part of a whole" or as percentages
- Categories add up to

Which type of graph?

$\#$	Description	Line	Bar	Pie
Ex	Amount of each color of M\&M's in a bag		X	
1	Heating a pan of water over a time period	X		
2	Shows number of students earning A's, B's, C's		X	
3	Measuring the percentage of each gas in air			X
4	Shows the percentage of allowance spent on different things			X
5	Shows height change over 15 year period	X		

TAILS

Teachers' Favorite Singers

Singers

T-Title
A - Axis

I - Interval

L - Labels
S - Scale

TAILS

Teachers's Favorite Singer

T- Title

- Write an appropriate title for the graph at the top.
- The title should contain both the independent and dependent variables. Ex. "Y versus X"

TAILS

Teachers's Favorite Singer

TAILS

Teachers's Favorite Singer

Decide on an appropriate scale for each axis.

Choose a scale that lets
A - Axis
you make the graph as
large as possible for your paper and data

T - Title

S - Scale

How to determine scale

Favorite Singer	Number of Teachers
Toby Keith	22
Madonna	15
Elvis	11
Sting	5
Sinatra	2

- Scale is determined by your range of numbers (highest \& lowest number).
- In this case your scale would be from 2-22.
- Decide on an appropriate scale for each axis.

The scale refers to the min and max numbers used on each axis. They may or may not begin at zero.

How to determine Intervals

Favorite Singer	Number of Teachers
Toby Keith	22
Madonna	15
Elvis	11
Sting	5
Sinatra	2

- The interval is decided by your scale.
- In this case your scale would be from $2-22$ and you want the scale to fit the graph.
- Subtract and Divide by how many intervals (spaces you have)
- The best interval would be to go by 5 's.

TAILS

Teachers's Favorite Singer

The amount of space between one number and the next or one type of data and the next on the graph.

What do you count by? 1's, 2's, 5's, 10s?

Choose an interval that lets you

T-Title

A - Axis

I - Interval

 make the graph as large as possible for your paper and data
S - Scale

TAILS

Teachers's Favorite Singer

T-Title
A - Axis
I - Interval

S - Scale

TAILS

Teachers's Favorite Singer

LABEL your bars $\underline{\text { Singers }}$
 do thosiberonohe anean?

T- Title

A - Axis

I - Interval

L - Labels
S - Scale

Summary

Scale \& Interval

Choose a scale that lets you make the graph as large as possible for your paper and data
Choose an interval that lets you make the graph as large as possible
Teachers's Favorite Singer

DRY MIX

D - Dependent

 variableR - Responding
$\mathrm{Y}-\mathrm{y}$-axis $\underline{\text { _Axis }}$
This is for your dependent variable-
what you are measuring (is expected to change)

DRY MIX

M - Manipulated
I - Independent

variable

XAXis ${ }^{\text {x-axis }}$

(This is for your
independent variable-what YOU change)

Create a line graph! TAILS DRYMIX

"Distance over time"

Distance (m)	Time (s)
10.3	1.5
20.2	2.9
29.8	4.3
40.4	5.8
49.1	7.0
60.9	8.7
70.2	10.0
80.1	11.4
90.6	12.9

Any Questions?

